
Shell Scripts



Scripts

• A shell script is a program written using shell commands.

• Different shells have different syntaxes.

• To specify bash as the script for your shell, use the following line as the first line in the script.

#!/bin/bash

• It must be the first line and start in column 1.

• Emacs indentation works best if your script name ends in .sh.



hello.sh

#!/usr/bin/bash

echo 'Hello, world!'



Running a Script

• You can run a script like this:

bash hello.sh

• If you make the script executable, you can run it like this:

chmod +x hello.sh

./hello.sh

• chmod changes the file permissions and +xmeans add executable access.



Variables

• Shell variables are given values like this:

x=foo

y=10000

• To get the value of a shell variable, precede it with a dollar sign.

echo $x

• Important! There can be no space between the variable name, the equal sign, and the value.



Arithmetic

• Arithmetic is done line this:

#!/bin/bash

x=100

y=200

z=5

echo $((x + y * z))

• Bash only has integer arithmetic.

• Inside $(( )) the $ in front of variable names is not needed.



Command Line Arguments

• Arguments to the script are stored in the variables $1, $2, $3, ...

• This script adds 2 arguments and prints the result.

#!/bin/bash

echo $1 + $2 = $(($1 + $2))

• If I run it like this (after making it executable):

./add.sh 123 45

the output is

123 + 45 = 168

or I can run it like this:

bash add.sh 123 45

• The arguments 123 and 45 are passed on from bash to the script.



C/Java Style Loops

#!/bin/bash

for ((i = 1; i <= 5; i++))

do

echo $i

done

• The double parentheses are required.

Output:

> bash count.sh

1

2

3

4

5



Command Substitution

• Putting a command inside $( ) takes the output and puts it on the command line.

> seq 5

1

2

3

4

5

> echo $(seq 5)

1 2 3 4 5

• You can also enclose the command in backquotes.

> echo `seq 5`

1 2 3 4 5



Python Style Loops (1)

#!/bin/bash

for i in 1 2 3 4 5

do

echo $i

done

Output:

1

2

3

4

5

• The syntax is for i in list ...

• Lists are not enclosed in anything and the items are separated by whitespace

• But we don’t want to have to list all the numbers.



Python Style Loops

• We can use command substitution to generate the list.

for i in $(seq 5)

do

echo $i

done

Output:

1

2

3

4

5



For Loops on the Command Line

> for i in $(seq 5); do echo $i; done

1

2

3

4

5

• The placement of semicolons has to be exactly right.

• The semicolon is used to separate commands on the command line.

• Semicolons can be used on the command line where newlines are used in scripts.

> x=1; y=2; echo $((x + y))

3



Conditionals

#!/bin/bash

for i in $(seq 8)

do

if (($i % 2 == 0))

then

echo $i is even

else

echo $i is odd

fi

done

Output:

1 is odd

2 is even

3 is odd

4 is even

5 is odd

6 is even

7 is odd

8 is even



For Loops with Files

• Make backup copies of C files.

> ls

a.c b.c c.c

> for f in *.c; do cp $f $f.bak; done

> ls

a.c a.c.bak b.c b.c.bak c.c c.c.bak



Case Statement

#!/bin/bash

case $1 in

apple | orange | pear | peach)

echo fruit

;;

brocolli | cabbage | lettuce)

echo veg

;;

*)

echo unknown

;;

esac

Sample Runs

> ./case.sh apple

fruit

> ./case.sh lettuce

veg

> ./case.sh hamburger

unknown



While Loops

i=0

while ((i < n))

do

echo $i

((i++)

done

or

i=0

while [[ i -lt n ]]

do

echo $i

((i++))

done



Special Variables in Bash

* List of all command line arguments except $0

$0 Name of the script that’s running

$1 $2 . . . $9 Arguments 1 through 9

$10 $11 . . . Tenth argument, eleventh, . . .

$# Number of arguments

$? Exit status of previous command

PS1 Your prompt



Using Command Line Arguments

#!/bin/bash

# Check for a command line argument

if (($# != 1))

then

echo usage: count.sh n >&2

exit 1

fi

for ((i = 1; i <= $1; i++))

do

echo $i;

done

• Comments start with # and go to the end of the line.

• exit 1 exits the program with status 1 (failure)

• >&2 redirects the output to standard error

• $1 is the command line argument



Exit Status

• Every program terminates with an exit status.

• Convention for exit status:

– 0 means the program succeeded

– 6= 0means the program failed

• The exit status of a script is the exit status of the last command that was executed

• The exit command terminates a script.

– If no status is given, the script exits with the status of the last command

– exit n makes the script exit with status n



Environment Variables (1)

• Environment variables are stored separately from shell variables.

• They are inherited by programs, so they can be used to pass information to programs.

• Example: The C compiler (cc) will use any options specified in the environment variable
CFLAGS. By setting this variable you don’t have to specify options every time you use the
compiler.

• Setting an environment variable:

export VAR=value

• This sets both the shell variable and the environment variable.

• When the shell starts, it initializes a shell variable for every environment variable.

• Convention: Environment variable names are all caps.

• Displaying an environment variable: printenv VAR

• Displaying all environment variables: printenv



Environment Variables (2)

> echo $FOO

> FOO=56

> echo $FOO

56

> printenv FOO

> export FOO=56

> echo $FOO

56

> printenv FOO

56



Environment Variables (3)

Some important environment variables

PATH A colon-separated list of directories the shell will search for commands

SHELL The shell

LANG The locale

HOME Your home directory

TERM Your terminal type

DISPLAY The X-windows display



Variable Modifiers (Substring)

${variable:n} substring starting at n

${variable:n:l} substring starting at n of length l

• Indexes start at 0.

Example

> x=thisisamediumlengthstring

> echo ${x:5:7}

samediu

> echo ${x:5}

samediumlengthstring



Variable Modifiers (Length)

${#variable} length of string

• Indexes start at 0.

Example

> x=thisisamediumlengthstring

> echo ${#x}

25



Variable Modifiers (Remove Prefix)

${#variable#prefix} Remove shortest matching prefix

${#variable##prefix} Remove longest matching prefix

Example

> f=foofoo.c

> echo ${f#*foo}

foo.c

> echo ${f##*yfoo}

.c



Variable Modifiers (Remove Suffix)

${#variable%suffix} Remove shortest matching suffix

${#variable%%suffix} Remove longest matching suffix

Example

f=foobarbar

> echo ${f%bar*}

foobar

> echo ${f%%bar*}

foo



Variable Modifiers (Substitution)

${#variable/pattern/replacement} Replace first matching substring

${#variable//pattern/replacement} Replace all matching substrings

${#variable/#pattern/replacement} Replace matching substring at the beginning

${#variable/%pattern/replacement} Replace matching substring at the end

Example

> x=abracadabra

> echo ${x/abra/foo}

foocadabra

> echo ${x//abra/foo}

foocadfoo

> echo ${x/#abra/foo}

foocadabra

> echo ${x/%abra/foo}

abracadfoo



Variable Modifiers (Example)

• Rename all files with file extension jpeg to the extension jpg:

> for f in *.jpeg; do mv $f ${f%jpeg}jpg; done

• or

> for f in *.jpeg; do mv $f ${f/%jpeg/jpg}; done



File Tests

-e file File exists

-d file File is a directory

-f file File is a regular file

-h file File is a symbolic link

-r file File is readable

-w file File is writeable

-s file File is not empty

-x file File is executable

• Used inside [[ ]]

• Example: (delete executable files)

for f in $* do

if [[ -x $f ]]

then

rm $f

fi

done

• Conditional Operators

&& and

|| or

! not



Other Conditional Expressions

• These can be used inside [[ ]]

• Comparing strings: == != < >

• Comparing numbers: -eq -ne -lt -le -gt -ge



Example: Print Length of Longest Line

#!/bin/bash

longest=0

while read line

do

if ((${#line} > longest))

then

longest=${#line}

fi

done

echo $longest



Example: Number Lines

#!/bin/bash

IFS= # Make read keep whitespace

count=1

while read line

do

printf "%6d %s\n" $count "$line"

((count++))

done



Examples: Numbers Lines From Many Files

#!/bin/bash

IFS= # Make read keep whitespace

count=1

function numberfile() {

while read line

do

printf "%6d %s\n" $count "$line"

((count++))

done

}

if (($# == 0))

then

numberfile

else

for f in $*

do

numberfile < $f

done

fi
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