
Shell Scripts

Scripts

• A shell script is a program written using shell commands.

• Different shells have different syntaxes.

• To specify bash as the script for your shell, use the following line as the first line in the script.

#!/bin/bash

• It must be the first line and start in column 1.

• Emacs indentation works best if your script name ends in .sh.

hello.sh

#!/usr/bin/bash

echo 'Hello, world!'

Running a Script

• You can run a script like this:

bash hello.sh

• If you make the script executable, you can run it like this:

chmod +x hello.sh

./hello.sh

• chmod changes the file permissions and +xmeans add executable access.

Variables

• Shell variables are given values like this:

x=foo

y=10000

• To get the value of a shell variable, precede it with a dollar sign.

echo $x

• Important! There can be no space between the variable name, the equal sign, and the value.

Arithmetic

• Arithmetic is done line this:

#!/bin/bash

x=100

y=200

z=5

echo $((x + y * z))

• Bash only has integer arithmetic.

• Inside $(()) the $ in front of variable names is not needed.

Command Line Arguments

• Arguments to the script are stored in the variables $1, $2, $3, ...

• This script adds 2 arguments and prints the result.

#!/bin/bash

echo $1 + $2 = $(($1 + $2))

• If I run it like this (after making it executable):

./add.sh 123 45

the output is

123 + 45 = 168

or I can run it like this:

bash add.sh 123 45

• The arguments 123 and 45 are passed on from bash to the script.

C/Java Style Loops

#!/bin/bash

for ((i = 1; i <= 5; i++))

do

echo $i

done

• The double parentheses are required.

Output:

> bash count.sh

1

2

3

4

5

Command Substitution

• Putting a command inside $() takes the output and puts it on the command line.

> seq 5

1

2

3

4

5

> echo $(seq 5)

1 2 3 4 5

• You can also enclose the command in backquotes.

> echo `seq 5`

1 2 3 4 5

Python Style Loops (1)

#!/bin/bash

for i in 1 2 3 4 5

do

echo $i

done

Output:

1

2

3

4

5

• The syntax is for i in list ...

• Lists are not enclosed in anything and the items are separated by whitespace

• But we don’t want to have to list all the numbers.

Python Style Loops

• We can use command substitution to generate the list.

for i in $(seq 5)

do

echo $i

done

Output:

1

2

3

4

5

For Loops on the Command Line

> for i in $(seq 5); do echo $i; done

1

2

3

4

5

• The placement of semicolons has to be exactly right.

• The semicolon is used to separate commands on the command line.

• Semicolons can be used on the command line where newlines are used in scripts.

> x=1; y=2; echo $((x + y))

3

Conditionals

#!/bin/bash

for i in $(seq 8)

do

if (($i % 2 == 0))

then

echo $i is even

else

echo $i is odd

fi

done

Output:

1 is odd

2 is even

3 is odd

4 is even

5 is odd

6 is even

7 is odd

8 is even

For Loops with Files

• Make backup copies of C files.

> ls

a.c b.c c.c

> for f in *.c; do cp $f $f.bak; done

> ls

a.c a.c.bak b.c b.c.bak c.c c.c.bak

Case Statement

#!/bin/bash

case $1 in

apple | orange | pear | peach)

echo fruit

;;

brocolli | cabbage | lettuce)

echo veg

;;

*)

echo unknown

;;

esac

Sample Runs

> ./case.sh apple

fruit

> ./case.sh lettuce

veg

> ./case.sh hamburger

unknown

While Loops

i=0

while ((i < n))

do

echo $i

((i++)

done

or

i=0

while [[i -lt n]]

do

echo $i

((i++))

done

Special Variables in Bash

* List of all command line arguments except $0

$0 Name of the script that’s running

$1 $2 . . . $9 Arguments 1 through 9

$10 $11 . . . Tenth argument, eleventh, . . .

$# Number of arguments

$? Exit status of previous command

PS1 Your prompt

Using Command Line Arguments

#!/bin/bash

Check for a command line argument

if (($# != 1))

then

echo usage: count.sh n >&2

exit 1

fi

for ((i = 1; i <= $1; i++))

do

echo $i;

done

• Comments start with # and go to the end of the line.

• exit 1 exits the program with status 1 (failure)

• >&2 redirects the output to standard error

• $1 is the command line argument

Exit Status

• Every program terminates with an exit status.

• Convention for exit status:

– 0 means the program succeeded

– 6= 0means the program failed

• The exit status of a script is the exit status of the last command that was executed

• The exit command terminates a script.

– If no status is given, the script exits with the status of the last command

– exit n makes the script exit with status n

Environment Variables (1)

• Environment variables are stored separately from shell variables.

• They are inherited by programs, so they can be used to pass information to programs.

• Example: The C compiler (cc) will use any options specified in the environment variable
CFLAGS. By setting this variable you don’t have to specify options every time you use the
compiler.

• Setting an environment variable:

export VAR=value

• This sets both the shell variable and the environment variable.

• When the shell starts, it initializes a shell variable for every environment variable.

• Convention: Environment variable names are all caps.

• Displaying an environment variable: printenv VAR

• Displaying all environment variables: printenv

Environment Variables (2)

> echo $FOO

> FOO=56

> echo $FOO

56

> printenv FOO

> export FOO=56

> echo $FOO

56

> printenv FOO

56

Environment Variables (3)

Some important environment variables

PATH A colon-separated list of directories the shell will search for commands

SHELL The shell

LANG The locale

HOME Your home directory

TERM Your terminal type

DISPLAY The X-windows display

Variable Modifiers (Substring)

${variable:n} substring starting at n

${variable:n:l} substring starting at n of length l

• Indexes start at 0.

Example

> x=thisisamediumlengthstring

> echo ${x:5:7}

samediu

> echo ${x:5}

samediumlengthstring

Variable Modifiers (Length)

${#variable} length of string

• Indexes start at 0.

Example

> x=thisisamediumlengthstring

> echo ${#x}

25

Variable Modifiers (Remove Prefix)

${#variable#prefix} Remove shortest matching prefix

${#variable##prefix} Remove longest matching prefix

Example

> f=foofoo.c

> echo ${f#*foo}

foo.c

> echo ${f##*yfoo}

.c

Variable Modifiers (Remove Suffix)

${#variable%suffix} Remove shortest matching suffix

${#variable%%suffix} Remove longest matching suffix

Example

f=foobarbar

> echo ${f%bar*}

foobar

> echo ${f%%bar*}

foo

Variable Modifiers (Substitution)

${#variable/pattern/replacement} Replace first matching substring

${#variable//pattern/replacement} Replace all matching substrings

${#variable/#pattern/replacement} Replace matching substring at the beginning

${#variable/%pattern/replacement} Replace matching substring at the end

Example

> x=abracadabra

> echo ${x/abra/foo}

foocadabra

> echo ${x//abra/foo}

foocadfoo

> echo ${x/#abra/foo}

foocadabra

> echo ${x/%abra/foo}

abracadfoo

Variable Modifiers (Example)

• Rename all files with file extension jpeg to the extension jpg:

> for f in *.jpeg; do mv $f ${f%jpeg}jpg; done

• or

> for f in *.jpeg; do mv $f ${f/%jpeg/jpg}; done

File Tests

-e file File exists

-d file File is a directory

-f file File is a regular file

-h file File is a symbolic link

-r file File is readable

-w file File is writeable

-s file File is not empty

-x file File is executable

• Used inside [[]]

• Example: (delete executable files)

for f in $* do

if [[-x $f]]

then

rm $f

fi

done

• Conditional Operators

&& and

|| or

! not

Other Conditional Expressions

• These can be used inside [[]]

• Comparing strings: == != < >

• Comparing numbers: -eq -ne -lt -le -gt -ge

Example: Print Length of Longest Line

#!/bin/bash

longest=0

while read line

do

if ((${#line} > longest))

then

longest=${#line}

fi

done

echo $longest

Example: Number Lines

#!/bin/bash

IFS= # Make read keep whitespace

count=1

while read line

do

printf "%6d %s\n" $count "$line"

((count++))

done

Examples: Numbers Lines From Many Files

#!/bin/bash

IFS= # Make read keep whitespace

count=1

function numberfile() {

while read line

do

printf "%6d %s\n" $count "$line"

((count++))

done

}

if (($# == 0))

then

numberfile

else

for f in $*

do

numberfile < $f

done

fi

	Scripts
	hello.sh
	Running a Script
	Variables
	Arithmetic
	Command Line Arguments
	C/Java Style Loops
	Command Substitution
	Python Style Loops (1)
	Python Style Loops
	For Loops on the Command Line
	Conditionals
	For Loops with Files
	Case Statement
	While Loops
	Special Variables in Bash
	Using Command Line Arguments
	Exit Status
	Environment Variables (1)
	Environment Variables (2)
	Environment Variables (3)
	Variable Modifiers (Substring)
	Variable Modifiers (Length)
	Variable Modifiers (Remove Prefix)
	Variable Modifiers (Remove Suffix)
	Variable Modifiers (Substitution)
	Variable Modifiers (Example)
	File Tests
	Other Conditional Expressions
	Example: Print Length of Longest Line
	Example: Number Lines
	Examples: Numbers Lines From Many Files

